Chapter 8 Nonlinear Regression Functions Powerpoint 3rd Edition
Download
Nonlinear Regression Functions (SW Chapter 8)
Download Presentation
Nonlinear Regression Functions (SW Chapter 8)
- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
-
Nonlinear Regression Functions(SW Chapter 8)
-
The TestScore – STR relation looks linear (maybe)…
-
But the TestScore – Income relation looks nonlinear...
-
The general nonlinear population regression function
-
Nonlinear Functions of a Single Independent Variable (SW Section 8.2)
-
1. Polynomials in X
-
Example: TestScore vs. Income
-
Estimation in STATA
-
Interpretation . graph twoway scatter testscr avginc || connected yhat avginc, sort msymbol(none) || connected yhat2 avginc, sort msymbol(none) See Chapter 3 of Statistics with Stata, especially pages 79 & 118
-
Interpretation
-
Interpretation
-
Marginal effects in STATA
-
Estimation of a cubic in STATA
-
Plotting a cubic in STATA . reg testscr avginc avginc2 avginc3, rob . predict yhat3 (option xb assumed; fitted values) . graph twoway scatter testscr avginc || connected yhat2 avginc, sort msymbol(none) || connected yhat3 avginc, sort msymbol(T)
-
Marginal effects in STATA
-
Marginal effects in STATA
-
Ramsey's RESET Test: REgression Specification Error Test • Consider the model (1) • General test for misspecification of functional form • If LSA #1 holds, then no non-linear function of the X's should be significant when added to the model. • Consider (2) • Null hypothesis is that (1) is correctly specified • How many powers of predicted values to include? • Conduct F-test on powers of predicted values • J.B. Ramsey (1969), Tests for Specification Error in Classical Linear Least Squares Regression Analysis. Journal of the Royal Statistical Society, Series B 31, 350–371
-
Ramsey's RESET Test . reg test str avginc, r Linear regression Number of obs = 420 F( 2, 417) = 132.65 Prob > F = 0.0000 R-squared = 0.5115 Root MSE = 13.349 ------------------------------------------------------------------------------ | Robust testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- str | -.6487401 .3533403 -1.84 0.067 -1.34329 .04581 avginc | 1.839112 .114733 16.03 0.000 1.613585 2.064639 _cons | 638.7292 7.301234 87.48 0.000 624.3773 653.081 ------------------------------------------------------------------------------ . estat ovtest (can just type . ovtest) Ramsey RESET test using powers of the fitted values of testscr Ho: model has no omitted variables F(3, 414) = 18.36 Prob > F = 0.0000
-
Ramsey's RESET Test . reg test str avginc avginc2, r Linear regression Number of obs = 420 F( 3, 416) = 286.55 Prob > F = 0.0000 R-squared = 0.5638 Root MSE = 12.629 ------------------------------------------------------------------------------ | Robust testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- str | -.9099512 .3545374 -2.57 0.011 -1.606859 -.2130432 avginc | 3.881859 .2709564 14.33 0.000 3.349245 4.414474 avginc2 | -.044157 .0049606 -8.90 0.000 -.053908 -.034406 _cons | 625.2308 7.087793 88.21 0.000 611.2984 639.1631 ------------------------------------------------------------------------------ . estat ovtest Ramsey RESET test using powers of the fitted values of testscr Ho: model has no omitted variables F(3, 413) = 2.48 Prob > F = 0.0605
-
Ramsey's RESET Test . reg test str avginc avginc2 avginc3, r Linear regression Number of obs = 420 F( 4, 415) = 207.23 Prob > F = 0.0000 R-squared = 0.5663 Root MSE = 12.608 ------------------------------------------------------------------------------ | Robust testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- str | -.9277523 .3562919 -2.60 0.010 -1.628114 -.2273905 avginc | 5.124736 .7045403 7.27 0.000 3.739824 6.509649 avginc2 | -.1011073 .0287052 -3.52 0.000 -.157533 -.0446815 avginc3 | .0007293 .0003414 2.14 0.033 .0000582 .0014003 _cons | 617.8974 7.926373 77.95 0.000 602.3165 633.4782 ------------------------------------------------------------------------------ . estat ovtest Ramsey RESET test using powers of the fitted values of testscr Ho: model has no omitted variables F(3, 412) = 1.79 Prob > F = 0.1490
-
Ramsey's RESET Test . reg test str el_pct meal_pct , r Linear regression Number of obs = 420 F( 3, 416) = 453.48 Prob > F = 0.0000 R-squared = 0.7745 Root MSE = 9.0801 ------------------------------------------------------------------------------ | Robust testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- str | -.9983092 .2700799 -3.70 0.000 -1.529201 -.4674178 el_pct | -.1215733 .0328317 -3.70 0.000 -.18611 -.0570366 meal_pct | -.5473456 .0241072 -22.70 0.000 -.5947328 -.4999583 _cons | 700.15 5.56845 125.74 0.000 689.2042 711.0958 ------------------------------------------------------------------------------ . estat ovtest Ramsey RESET test using powers of the fitted values of testscr Ho: model has no omitted variables F(3, 413) = 6.29 Prob > F = 0.0004
-
Ramsey's RESET Test . reg test str el_pct meal_pct avginc , r Linear regression Number of obs = 420 F( 4, 415) = 467.42 Prob > F = 0.0000 R-squared = 0.8053 Root MSE = 8.4477 ------------------------------------------------------------------------------ | Robust testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- str | -.5603892 .2550641 -2.20 0.029 -1.061768 -.0590105 el_pct | -.1943282 .0332445 -5.85 0.000 -.2596768 -.1289795 meal_pct | -.3963661 .0302302 -13.11 0.000 -.4557895 -.3369427 avginc | .674984 .0837161 8.06 0.000 .5104236 .8395444 _cons | 675.6082 6.201865 108.94 0.000 663.4172 687.7992 ------------------------------------------------------------------------------ . estat ovtest Ramsey RESET test using powers of the fitted values of testscr Ho: model has no omitted variables F(3, 412) = 0.47 Prob > F = 0.7014
-
Ramsey's RESET Test: replicated . predict yh (option xb assumed; fitted values) . sum yh Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- yh | 420 654.1565 17.09817 614.9183 702.8387 . gen yhz = (yh-r(mean))/r(sd) . sum yh* Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- yh | 420 654.1565 17.09817 614.9183 702.8387 yhz | 420 1.22e-09 1 -2.294882 2.847214 . gen yhz2=yhz*yhz . gen yhz3=yhz^3 . gen yhz4=yhz^4
-
Ramsey's RESET Test: replicated . reg test str el meal avginc yhz2 yhz3 yhz4 Source | SS df MS Number of obs = 420 -------------+------------------------------ F( 7, 412) = 244.48 Model | 122595.145 7 17513.5921 Prob > F = 0.0000 Residual | 29514.4488 412 71.6370116 R-squared = 0.8060 -------------+------------------------------ Adj R-squared = 0.8027 Total | 152109.594 419 363.030056 Root MSE = 8.4639 ------------------------------------------------------------------------------ testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- str | -.5500585 .2336368 -2.35 0.019 -1.009327 -.0907896 el_pct | -.2170374 .0407058 -5.33 0.000 -.2970544 -.1370204 meal_pct | -.400967 .0289303 -13.86 0.000 -.4578364 -.3440976 avginc | .6476592 .1505253 4.30 0.000 .3517657 .9435527 yhz2 | .7652051 .915534 0.84 0.404 -1.034495 2.564906 yhz3 | -.0822669 .3243362 -0.25 0.800 -.7198272 .5552933 yhz4 | -.0650369 .1767693 -0.37 0.713 -.412519 .2824453 _cons | 675.8077 5.443279 124.15 0.000 665.1076 686.5077 ------------------------------------------------------------------------------ . test yhz2 yhz3 yhz4 ( 1) yhz2 = 0 ( 2) yhz3 = 0 ( 3) yhz4 = 0 F( 3, 412) = 0.47 Prob > F = 0.7014
-
2. Logarithmic functions of Y and/or X
-
The 3 log specifications
-
I. Linear-log population regression function
-
Linear-log case, continued
-
Example: TestScore vs. ln(Income)
-
Linear-log vs. Cubic models
-
II. Log-linear population regression function
-
Log-linear case, continued
-
III. Log-log population regression function
-
Log-log case, continued
-
Example: ln( TestScore) vs. ln( Income)
-
Example: ln( TestScore) vs. ln( Income), ctd.
-
The log-linear and log-log specifications:
-
40
-
41
-
42
-
43
-
44
-
Other nonlinear functions (and nonlinear least squares) (SW App. 8.1)
-
Negative exponential growth
-
Nonlinear Least Squares
Chapter 8 Nonlinear Regression Functions Powerpoint 3rd Edition
Source: https://www.slideserve.com/adin/nonlinear-regression-functions-sw-chapter-8